Molecular phylogeny and biogeography of the narrow endemic *Coelonema* and affinutive *Draba* (Brassicaceae) based on two DNA regions

Shengyun Chen a,b,d, Guili Wu c, Shilong Chen d,* , Jiawen Ren a, Dahe Qin a

a State Key Laboratory of Cryospheric Sciences, Cold and Arid Regions Environmental and Engineering Research Institute, the Chinese Academy of Sciences, Lanzhou 730000, China
b Qilian Shan Station of Glaciology and Ecologic Environment, the Chinese Academy of Sciences, Yumen 735200, China
c Key Laboratory of Arid and Grassland Ecology, Lanzhou University, Lanzhou 730000, China
d Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, the Chinese Academy of Sciences, No. 59 Xiguan Avenue, Xining Qinghai, 810001, China

A R T I C L E I N F O

Article history:
Received 16 February 2010
Accepted 8 August 2010

Keywords:
Biogeography
Coelonema
Draba
ITS
Phylogeny
trlL

A B S T R A C T

To clarify the relationship between two genera, *Draba* and the narrow genus *Coelonema*, endemic to the Qilian Mountains of the northeastern Qinghai-Tibet Plateau, phylogenetic analyses were conducted using nuclear ribosomal DNA ITS, and the chloroplast DNA *trnl*, from *Coelonema draboides* and 30 species of *Draba* representing eight sections, including 25 species of Chinese *Draba*, seven of which were endemic to the study region. The results unambiguously support several previously published proposals to unite *Coelonema* with *Draba* and accommodate *C. draboides* in the latter genus on the basis of morphological re-examination. Our molecular data presented here also provide evidence that these two genera should be combined as a monophyletic group with high support. In addition, it is estimated that *Draba* may have originated about 1.36–2.71 Mya, with *C. draboides* diverging from *Draba* about 0.15–0.31 Mya, based on the molecular calibration of ITS datasets. The assumed speciation and rapid expansion of these two genera is likely to have occurred in the eastern edge of the Qilian Mountains area according to molecular phylogeny and estimated divergence times, which correspond well with the known geological and paleobotanical histories of the Qinghai-Tibet Plateau.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The Qinghai-Tibet Plateau (QTP) is the largest, highest and youngest plateau in the world, covering an area of more than 2.5 × 10^6 km² at an average elevation of about 4000 m above sea level (Zheng, 1996). Despite significant impacts from both the ice sheet that covered almost the entire plateau during the Quaternary and the uplifting of the QTP since the Tertiary, which must have resulted in large-scale recession and extinction of the flora (Li et al., 1995), the QTP is characterised by an exceptionally young flora with more than 12,000 species of 1500 genera and 189 families. It is estimated that about 50 genera and more than 25% of the total number of species are endemic to this region (Wu, 1980, 1987; Wang et al., 1993; Wu and Wu, 1996). These endemic genera of the QTP, which have been classified primarily on morphological characteristics, are hypothesized to be closely related, and to have originated from local or adjacently distributed genera (Wu, 1980, 1987; Wu et al., 1995). If this hypothesis is correct, it should be possible to find the sympatrically or immediately specific progenitors...
of all endemics in the region around the QTP. However, it is still difficult to identify the close relatives of some endemics, especially some endemic genera, using purely morphological features.

As a monotypic genus of the Brassicaceae, Coelonema Maxim., which is endemic to the Qilian Mountains of the northeastern QTP, was initially established by Maximovicz (1880). Coelonema draboides Maxim., the only representative of the monotypic genus Coelonema, is a perennial, stoloniferous herb, which produces many stems covered with persistent petiolar remains from previous years. Stems reach a height of 4–8 cm before flowering, with simple and forked trichomes. Plants flower from June to July forming a rosette, and silicles mature by about August. Typical habitats of C. draboides are alpine meadow, rocky crevices, and shrubland within cryospheric regions at altitudes of 3500–4000 m above sea level (Zhou, 1987, 2001). It is distributed narrowly in the Huzhu and Datong Counties of Qinghai Province, and in Tianzhu County of Gansu Province in the Qilian Mountains. Draba L. is the largest genus in the family Brassicaceae and a member of the tribe Arabideae, includes about 370 described species distributed worldwide, especially in the subarctic to arctic regions, and in alpine or mountainous areas of the temperate regions of the Northern Hemisphere (Al-Shehbaz, 1987; Al-Shehbaz et al., 2006; Warwick and Al-Shehbaz, 2006; Koch et al., 2007; Jordon-Thaden et al., 2010). Draba is notorious for its taxonomic complexity, the current sectional classification at the infrageneric level being highly controversial. Schulz (1927, 1936) divided this genus into 17 sections according to the presence or absence of stem leaves and flower colour etc., but some botanists (e.g. Fernald, 1934; Al-Shehbaz, 1987) have criticized this artificial sectional classification. For Chinese Draba, comprising 48 species (16 endemic), Zhou (1987) divided the group into the following four sections following Schulz’s (1927, 1936) and Walters’s (1964) sectional delimitation: Chrysodraba DC., Phylodraba O. E. Schulz, Draba and Drabella DC.

Zhou (1987) connected Coelonema with Draba, and delimited Armoracia Gaertn. within the tribe Drabeae of Brassicaceae, and proposed that it was closely related to Draba on the basis of morphological characters (Maximovicz, 1880; Ho et al., 1997). However, Coelonema was still treated as an independent genus (Zhou, 1987, 2001), because it differed from Draba, but only to the extent that the former genus included stoloniferous perennial species with flattened bases to their staminal filaments, while Draba consisted of annuals, biennials, or perennials with slender or slightly flattened staminal filaments (Al-Shehbaz, 2004). Despite these differences, Coelonema was transferred to Draba, and C. draboides was renamed Draba draboides, since there were no other significant differences in morphological characters (Appel and Al-Shehbaz, 2003; Al-Shehbaz, 2004). As a result, the phylogenetic relationship between Coelonema and Draba has not yet been explicitly addressed. DNA sequences are particularly informative for resolving the true relationships among problematic genera, especially where morphological characters are lacking or ambiguous (Francisco-Ortega et al., 1997, 2001; Panero et al., 1999; Park et al., 2001). The internal transcribed spacers (ITS) region of nuclear ribosomal DNA and the trnL (UAA) intron (trnl) region of noncoding chloroplast DNA have been shown to be suitable markers for phylogenetic reconstructions within a genus, or for closely related genera in the QTP (Chen et al., 2005a,b; Liu et al., 2000, 2001, 2002, 2006; Wang and Liu, 2004; Wang et al., 2005, 2007; Zhang et al., 2008). Moreover, these two regions have also been used for the phylogenetic analyses of foreign Draba (Widmer and Baltisberger, 1999; Koch and Al-Shehbaz, 2002; Scheen et al., 2002; Beilstein and Windham, 2003; Grundt et al., 2004). In addition, major goals of modern biogeography are to reconstruct the phylogenies of genera and evaluate their origin and evolution in the context of the geological and paleoclimatic histories of their distribution areas (Avise, 2000). However, whether divergence time nor biogeographic analyses of Coelonema and Chinese Draba have been performed in any previous studies.

Hence, the main aims of the study presented here were to apply molecular phylogenetic approaches based on nuclear ITS and plastid trnL sequence data (focusing on the narrow endemic Coelonema as well as Chinese Draba) in order to: (1) clarify the phylogenetic relationships between Coelonema and Draba, (2) infer the divergence time of these two genera using a molecular calibration, and (3) assess putative correlations between the origins of the two genera and geological events.

2. Materials and methods

2.1. Plant materials

Twenty-four species (including varieties treated as species), belonging to Coelonema and Draba were newly sampled (Table 1). The species of Draba represent all sections of this genus in China, according to Zhou (1987, 2001). Among the studied species of these two genera, eight species endemic to China were sampled, including C. draboides, Draba handelii, Draba ladyginii, Draba rockii, Draba senilis etc. Voucher specimens were deposited in the herbarium of the Northwest Plateau Institute of Biology (HNWP), Chinese Academy of Sciences. Sequence data for eight species of Draba were retrieved from GenBank (indicated by "ab" in Table 1); their origins and reasons for their selection are given in Koch and Al-Shehbaz (2002; see Fig. 2) and Koch et al. (2005). Arabis alpina L. and Erophila verna (L.) Chev. were chosen as outgroups based on the results of previous studies (Schulz, 1927; Koch and Al-Shehbaz, 2002). Table 1 lists the origins of the taxonomic material, voucher information, and GenBank accession numbers of the species studied. The gross morphological characters of Coelonema and Draba are compared in Table 2.

2.2. DNA extraction, amplification and sequencing

Total genomic DNA was extracted from silica-gel-dried leaves or other material from herbarium specimens using the 2× CTAB procedure following Doyle and Doyle (1987) or a CASuper Plant Genomic DNA Isolation Kit, following the manufacturer’s protocol (Casarray, Shanghai, China). The nuclear ITS and plastid trnL regions were amplified with universal primers.
performed with the following programs: initial denaturation at 94°C for 5 min; 35 cycles of 94°C for 45 s, 56°C for 1 min, and final extension step at 72°C for 4 min. All successfully amplified DNA fragments were purified using a CASPure PCR Purification Kit following the protocol recommended by the manufacturer (CASParray). Sequencing reactions were carried out in a Biometra thermal cycler (Tpersonal 48) using DNA polymerase (CASParray, Shanghai, China). PCRs were performed with the following programs: initial denaturation at 94°C for 4 min; 36 cycles of 94°C for 45 s, 56°C for 1 min, and a final extension step at 72°C for 7 min. All successfully amplified DNA fragments were purified using a CASPure PCR Purification Kit following the protocol recommended by the manufacturer (CASParray, Shanghai, China). Sequencing primers were the same as those used for amplifying the corresponding regions, but the reaction volumes were scaled down to 10 μl. Sequencing reactions were carried out in a Biometra thermal cycler (Tpersonal 48) using a DYEnamic ET terminator Cycle Sequencing Kit (Amersham Biosciences Corp.) following the manufacturer's protocol. Sequencing products were cleaned using Autoseq 96 plates and then analysed with a MegaBACE500 DNA Analysis System (Amersham Biosciences Corp.). Both DNA strands were sequenced using forward and reverse primers, giving an overlap of at least 70%. Consequently, and since materials of some species were sampled from more than one locality, 28 sequences of ITS and trnL were obtained from 24 species of Coelonnementa and Draba.

Table 1

<table>
<thead>
<tr>
<th>Genus Section</th>
<th>Species</th>
<th>Locality</th>
<th>Voucher</th>
<th>GenBank Accession No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Draba DC.</td>
<td>D. alpina</td>
<td>Huzhu, Qinghai 3600</td>
<td>1788</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D. incompta Steven</td>
<td>Qimo, Xinjiang 4180</td>
<td>2626</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D. involucrata (W. W. Smith)</td>
<td>Qumalai, Qinghai 4600</td>
<td>00770</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D. involucrata (W. W. Smith)</td>
<td>India</td>
<td>Kil26</td>
<td>DQ518393 DQ180237</td>
</tr>
<tr>
<td></td>
<td>D. oreades Schulz</td>
<td>Maqin, Qinghai 4340</td>
<td>665</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D. rochii O. E. Schulz</td>
<td>Baqing, Xizang 4730</td>
<td>4059</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D. selinis O. E. Schulz</td>
<td>Yushu, Qinghai 5085</td>
<td>675</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D. oligosperma Hook</td>
<td>U. S. A.</td>
<td>79233</td>
<td>AF146949 AF146939</td>
</tr>
<tr>
<td></td>
<td>D. elata Hook, F. et Thoms.</td>
<td>Menyuan, Qinghai 3800</td>
<td>1476</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D. altica (C. A. Mey.) Bunge</td>
<td>Yushu, Qinghai 4850</td>
<td>531</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D. glomerata Royle</td>
<td>Maduo, Qinghai 4660</td>
<td>243</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D. handelii O. E. Schulz</td>
<td>Dingri, Xizang 5200</td>
<td>5727</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D. lutea Hook, F. et Thoms.</td>
<td>Yushu, Qinghai 3900</td>
<td>651</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D. lutea Hook, F. et Thoms.</td>
<td>Haibei, Qinghai 3400</td>
<td>1483</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D. lanceolata Royle</td>
<td>Yuzha, Xizan 2500</td>
<td>0310</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D. lanceolata Royle var. changii O. E. Schulz</td>
<td>Maqin, Qinghai 4780</td>
<td>776</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D. lanceolata Royle var. leioarpa O. E. Schulz</td>
<td>Datong, Qinghai 3650</td>
<td>5680</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D. media Turcz.</td>
<td>Hainan, Qinghai 3300</td>
<td>1499</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D. parviflora (E. Regel) O. E. Schulz</td>
<td>Dangci, Xizang 4280</td>
<td>679</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D. subambulatrix C. A. Mey</td>
<td>Maqin, Qinghai 3950</td>
<td>840</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D. indica L.</td>
<td>Dulan, Qinghai 3500</td>
<td>1547</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D. asiophylla Royle</td>
<td>India</td>
<td>Kil27</td>
<td>DQ518394 DQ180238</td>
</tr>
<tr>
<td></td>
<td>D. elliptoides Hook, f. et Thoms.</td>
<td>Jiuzhi, Qinghai 3800</td>
<td>530</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D. eriopoda Turcz.</td>
<td>Hainan, Qinghai 4000</td>
<td>6399</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D. eriopoda Turcz.</td>
<td>Hainan, Qinghai 3420</td>
<td>1481</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D. eriopoda Turcz.</td>
<td>Hainan, Qinghai 3750</td>
<td>1497</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D. nemorosa L</td>
<td>Guyuan, Ningxia 2450</td>
<td>76-00900</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D. nemorosa L</td>
<td>Maqin, Qinghai 3700</td>
<td>1513</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D. stenocarpa Hook. F. et Thoms.</td>
<td>Dari, Qinghai 4150</td>
<td>1712</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D. peruviana (DC.) O. E. Schulz a</td>
<td>Peru</td>
<td>4440</td>
<td>AF146468 AF146915</td>
</tr>
<tr>
<td></td>
<td>D. hitchcockii Rollins a</td>
<td>U. S. A.</td>
<td>83263</td>
<td>AF146487 AF146935</td>
</tr>
<tr>
<td></td>
<td>D. schusteri O. E. Schulz a</td>
<td>Peru</td>
<td>6033</td>
<td>AF146453 AF146901</td>
</tr>
<tr>
<td></td>
<td>D. schusteri O. E. Schulz a</td>
<td>Switzerland</td>
<td>1996B</td>
<td>AF120722 AF120738</td>
</tr>
<tr>
<td></td>
<td>D. azizoides L</td>
<td>Austria</td>
<td>OSBU#5199 AF146512 AF146958</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D. azizoides L</td>
<td>Romania</td>
<td>3618</td>
<td>AF137559 AY034180</td>
</tr>
<tr>
<td></td>
<td>D. azizoides L</td>
<td>Germany</td>
<td>Lys0048</td>
<td>DQ249862 DQ479871</td>
</tr>
</tbody>
</table>

(a) and (b), both in text and table, indicate the same plant collected from different locations. c and d, both in text and table, indicate universal primers.

Indicates sequences of these species that were downloaded from GenBank.

ITS1 and ITS4

ITS1 and ITS4 (White et al., 1990), determined by comparison with published sequences of the genus Draba retrieved from Genbank (Koch and Al-Shehbaz, 2002). Each sequence dataset was subjected to maximum parsimony (MP) and maximum likelihood (ML) analyses using

2.3 Data analysis

All sequences were aligned using ClustalX with additional minor manual adjustments. Sequences’ boundaries were determined by comparison with published sequences of the genus Draba retrieved from Genbank (Koch and Al-Shehbaz, 2002). Each sequence dataset was subjected to maximum parsimony (MP) and maximum likelihood (ML) analyses using
PAUP*4.0b10 (Swofford, 2003) and Bayesian analysis using MrBayes 3.0 (Huelsenbeck and Ronquist, 2001). Modeltest, Version 3.06 (Posada and Crandall, 1998), was used to select parameters and assumptions for ML analyses. In MP analysis, characters were equally weighted and unordered (Fitch, 1971), with all gaps treated as missing data. Heuristic searches were conducted with 100 replicates of random addition of sequences, in combination with ACCTRAN character optimization, MULPARS + TBR branch-swapping and STEEPEST DESCENT options to search for multiple islands of most-parsimonious trees (Maddison, 1991). The relative support for individual clades was evaluated by bootstrap analysis (Felsenstein, 1985). Bootstrap values (BS) were calculated from 1000 replicates using a heuristic search with simple addition of sequence, TBR branch-swapping, and MULPARS options. For Bayesian analyses using a common model of GTR + I + G, four simultaneous Monte Carlo Markov chains (MCMCs) were run for two million generations, saving a tree every 100 generation. A majority-rule consensus tree was calculated by PAUP* from the last 16,001 out of the 20,001 trees sampled. The first 4000 trees (burn-in) were excluded to avoid trees that might have been sampled prior to the convergence of the Markov chains. The Bayesian posterior probabilities (BPP) of each topological bipartition were also estimated among their frequency across all 16,001 sampled trees (Larget and Simon, 1999). Support for each branch was assessed using both BP and BPP. The incongruence length difference (ILD) test (Farris et al., 1995) was used to detect potential conflicts between the phylogenetic indications provided by the nuclear and plastid datasets, and to determine whether it would be valid to combine them. The ILD test was implemented as a partition homogeneity test in the PAUP* program (Sinauer Associates Inc., Sunderland, MA, USA), in which 1000 replicates were each heuristically searched with 100 random sequence additions.

An ML analysis was also performed with PAUP. The best-fit ML substitution model for each dataset was selected using Modeltest, and these optimal models were then used to parameterize likelihood searches in PAUP, with the simple addition of sequences, TBR branch-swapping, MULTREES and COLLAPSE options selected. Based on ITS sequence data, the molecular clock hypothesis was tested using a likelihood-ratio (LR) test (Huelsenbeck and Rannala, 1997) in PAUP to compare the log-likelihood of the ML trees with and without a molecular clock assumption. When the LR test rejected a molecular clock hypothesis, the ML tree based on the ITS sequence was subjected to non-parametric rate smoothing (NPRS; Sanderson, 1997) using the default settings in TreeEdit v1.0a8 (Rambaut and Charleston, 2000; Richardson et al., 2001) to estimate divergence times.

3. Results

3.1. ITS and trnL sequences

The lengths of unaligned ITS and trnL sequences varied from 662 to 666 base pairs (bp) and from 356 to 359 bp, and the total alignments were 668 bp and 359 bp long among species of Coelonema and Draba, respectively. The mean pairwise
distance between *C. draboides* and the *Draba* species ranged from 0.301% (*C. draboides* vs. *Draba lanceolata var. leiocarpa*) to 4.834% (*C. draboides* vs. *Draba nemorosa*\(^{(a)}\)) for ITS and from 0 to 2.535% (*C. draboides* vs. *Draba aizoides*) for *trnL*. The highest pairwise distance found within species of *Draba* was 5.438% for ITS (*D. nemorosa*\(^{(a)}\) vs. *Draba glomerata* and *D. lanceolata var. chingii*) and 2.817% for *trnL* (*D. aizoides* vs. *Draba incompta* and *D. nemorosa*\(^{(b)}\)). The ingroup (*Coelonema* and *Draba*) species showed a pairwise distance variation of 5.430%–8.540% for ITS and 1.690%–3.380% for *trnL* with two outgroup taxa, *A. alpina* and *E. verna* (pairwise distance matrix not shown).

3.2. Phylogenetic analysis and divergence time

The nuclear ITS matrix used for the analyses contained 668 characters, of which 544 were constant, 79 variable but parsimony-uninformative, and 45 phylogenetically informative when the gaps were treated as missing data. MP analyses yielded over 2208 trees with a length of 176 steps, a consistency index (CI) of 0.784 and a retention index (RI) of 0.779. The 50% majority-rule consensus tree derived from Bayesian analysis is shown in Fig. 1, with BPP values noted above branches. The topologies of the ML tree (not shown; – In 1976.987, the best-fit model being SYM + G) and the Bayesian 50% majority-rule consensus tree were mostly congruent with the strict consensus tree (not shown). Many of the nodes along the spine of

Fig. 1. The 50% majority-rule consensus tree derived from Bayesian analysis of the nuclear internal transcribed spacer (ITS) dataset. Numbers above and below the branches indicate the Bayesian posterior probabilities (BPP) and the maximum parsimony bootstrap (BS) values with >50% support based on 1000 replicates, respectively. Dashed lines denote branches that collapse in the strict consensus tree from the parsimony analysis. The sections following each species are indicated. Petal colour is indicated by Y (yellow) and W (white).
the tree in Fig. 1 have moderate or strong BPP and BS (below branches) values. In common with previous reports based on morphological characters (Appel and Al-Shehbaz, 2003; Al-Shehbaz, 2004), the present analyses strongly support the notion that *C. draboides* should be accommodated within *Draba* (BS = 81%; BPP = 89%).

When gaps were excluded, the aligned plastid *trnL* data included 359 total characters, of which 13 were variable, and only 11 were potentially informative. The Bayesian 50% majority-rule consensus tree is shown in Fig. 2. Parsimony analysis identified only four MP trees with 28 steps (CI = 0.893; RI = 0.943). The ML analysis resulted in a tree with a likelihood score of \(-\ln 670.542\) (not shown; the best-fit model being HKY + G). The topological results of three methods were largely congruent, and also strongly support the placement of *Coelonema*, which should be united with *Draba* (BS = 87%; BPP = 86%) in accordance with the ITS results.

Since the ILD test showed potential conflicts between the nuclear ITS and plastid *trnL* datasets (\(P = 0.01\)), the data for two fragments were not combined. Although Koch and Al-Shehbaz (2002) demonstrated that the genus *Erophila* should be integrated into *Draba*, our results from the ITS tree (Fig. 1; BS = 81%; BPP = 89%) and the *trnL* tree (Fig. 2; BS = 66%; BPP = 87%) don't support this conclusion. The assumption of a molecular clock using the ITS sequences matrix could not be rejected on the basis of an LR test (1976.987 vs. 1995.452, d.f. = 36, \(P > 0.05\)). However, no reliable fossil record for the tribe *Drabeae* is available and it is not possible to calibrate a related node to estimate the divergence time for *C. draboides*. Based on the ITS clock used by Koch and Al-Shehbaz (2002) for *Draba*, in which a 1% divergence corresponded to 0.5–1.0 million years, *Draba* may have originated about 1.36–2.71 million years ago (Mya) and *C. draboides* is estimated to have diverged from about 0.15 to 0.31 Mya (Figure not shown).

Fig. 2. The 50% majority-rule consensus tree derived from Bayesian analysis of the *trnL* matrix. See Fig. 1 for further details.
4. Discussion

4.1. Phylogenetic relationships of Coelonema and Draba

Based on the analysis of nuclear ITS sequences, western North American and South American Draba have previously been reported to be monophyletic taxa by Koch and Al-Shehbaz (2002) and by Beilstein and Windham (2003). And then, Jordon-Thaden et al. (2010) tested that Draba represented a monophyletic evolutionary lineage within the tribe Arabidaeae. Similarly, our present results from the analyses of molecular data also indicate Coelonema and Draba to be monophyletic. In the phylogenetic tree based on ITS sequence data, 31 species of these two genera fall tentatively into four clades (Fig. 1): C. draboides is grouped with the 22 species of Draba (Group A; BPP = 87%), Group B comprises eight species of Draba (BPP = 95%), whereas Groups C and D consist of D. aizoides and D. nemorosa (3), with high supports (BS = 93%, BPP = 100%; BS = 61%, BPP = 100%), respectively. In common with the results of Beilstein and Windham (2003), a basal clade is also formed by Group D with D. nemorosa (3). On the basis of 36 sets of sequence data for 30 species, three groups (I, II and III) have been provisionally identified within the trnL tree (Fig. 2). C. draboides forms a clade with 20 species of Draba in Group I (BS = 64%, BPP = 94%), Group II comprises three species of Draba (BS = 52%; BPP = 96%), and six species of Draba form Group III with high BS and BPP values (BS = 84%; BPP = 100%). These results strongly indicate that Coelonema should not be treated as a monotypic genus endemic to the QilianMountains, and that C. draboides should certainly be nested within Draba. These results also support the conclusions drawn by Appel and Al-Shehbaz (2003) and Al-Shehbaz (2004), on the basis of morphological re-examination, that C. draboides should be accommodated within Draba and renamed D. draboides.

It is well-known that the genus Draba, which includes about 370 species primarily distributed in the arctic-alpine region of the Northern Hemisphere, with some 80 species in South and Central America and 48 species (16 endemic) in China, is the largest and most taxonomically problematic genus in the Brassicaceae (Al-Shehbaz, 1987; Zhou, 1987, 2001; Koch and Al-Shehbaz, 2002; Al-Shehbaz, et al., 2006; Warwick and Al-Shehbaz, 2006; Koch et al., 2007; Jordon-Thaden et al., 2010). The phylogenetic relationships among species of Draba have been investigated in many studies comparing gross morphology, floral anatomy, chromosomes and molecular data (Schulz, 1927; Mulligan, 1976; Zhou, 1987, 2001; Brochmann et al., 1993; Koch and Al-Shehbaz, 2002; Scheen et al., 2002; Beilstein and Windham, 2003; Grundt et al., 2004, 2006; Jordon-Thaden et al., 2010). However, until the present study of 25 out of 48 Chinese Draba species, including seven endemic species and seven foreign species (Table 1), the molecular phylogeny of the Chinese species of Draba had not been investigated. Koch and Al-Shehbaz (2002) found little support for Schulz’s (1927) sections of South American species of Draba, using ITS and trnL data. Although the species in the present study were subdivided into eight sections of Draba according to Schulz (1927) and Zhou (1987), our results don’t generally support the infrageneric classification, with the possible exception of some subclades, for example Draba oreades and D. incompta (BS = 76%, BPP = 97%) and D. rockii and D. semilis (BPP = 98%) (Fig. 1). Moreover, petal colour among species of Draba in the field has been considered as a taxonomically important character when combined with information on chromosome number (Mulligan, 1976; Zhou, 2001; Beilstein and Windham, 2003). Mulligan (1976) proposed that native North American Draba could be split into three groups: the first comprising all white-flowered taxa with euploid (x = 8) chromosome numbers and partial interfertility; the second comprising all yellow-flowered species with euploid (x = 8) chromosome numbers; and the third consisting of yellow-flowered species with aneuploid (x = 9, 10, 12, etc.) chromosome numbers. Furthermore, western North American Draba were divided into well-supported clades; one of taxa with a chromosome number based on x = 8, and one of taxa whose chromosome base numbers appear to be aneuploid, deviating from x = 8. Our analyses of nuclear ITS and trnL regions clearly do not support these proposed divisions. According to the ITS Bayesian tree (Fig. 1), Group A includes not only white-petalled, euploid species, e.g. D. lanceolata (2n = 32; Zhou, 2001), but also yellow-petalled euploid species, e.g. Draba alpine (x = 8; Brochmann et al., 1993) and aneuploid species, e.g. C. draboides (2n = 42; Huang et al., 1996) and D. oreades (2n = 40; Zhou, 2001); while Group B includes both yellow-petalled euploid species, e.g. Draba eriopoda (x = 8; Huang et al., 1996) and white-petalled euploid species, e.g. Draba incana (x = 8; Brochmann et al., 1993). Moreover, since the hypothesized base chromosome number for Draba is x = 8, yellow-flowered, euploid species have been considered ancestral in the genus (Mulligan, 1976; Koch and Al-Shehbaz, 2002). Since D. nemorosa (3) is a yellow-flowered, euploid species with base chromosome number x = 8 (Beilstein and Windham, 2003) and is situated in a basal clade (Group D) (Fig. 1), it is proposed as an ancestral taxon in Draba.

Since the monotypic Coelonema, which is endemic to the QilianMountains of the northeastern QTP, has been recognized to be closely related to Draba (Maximovicz, 1880; Ho et al., 1997), both Coelonema and Draba have been positioned within tribe Drabeae of the family Brassicaceae, along with the genus Armoracia (Zhou, 1987). Various Chinese floras state that Coelonema differs constitutionally from Draba by the former including species with winged, toothless, hollow and filiform filaments, as well as lunar lateral-glands; whereas species included in Draba have wingless, solid and thin filaments, together with toothlike, semiannular or annular lateral-glands (Table 2). Apart from these trivial differences, these two genera are not otherwise separable on morphological grounds (Table 2). After a critical examination of the holotypes of C. draboides, and numerous other species of Asian Draba, Al-Shehbaz (2004) held these alleged differences to be insignificant. The same conclusion was reached by Appel and Al-Shehbaz (2003), who justified uniting Coelonema with Draba, and accommodating C. draboides within Draba and renaming it D. draboides. The results of our study on the molecular phylogeny of Coelonema and Draba are clearly in agreement with these proposals (Figs. 1 and 2). However, the infrageneric position of D. draboides remains indistinct and further studies using more species of Draba are necessary to resolve this issue.
4.2. Biogeographical implications

Several botanists have documented the close relationships between the floras of Central Asia and western North America (Parks and Wendel, 1993; Koch and Al-Shehbaz, 2002), thereby establishing complex speciation and migration scenarios for plants. The Bering land-bridge, which putatively connected Asia and North America in several periods during the late Tertiary and Pleistocene (Parrish, 1987), probably served as a migration route for several Brassicaceae taxa. Koch and Al-Shehbaz (2002) have suggested that some Draba taxa may have reached North America from the high mountains of Central Asia and circumboreal areas, via the Bering Bridge. And then, some analyses of the geographic origin indicated that Draba originated somewhere within the regions between the central Asian and Caucasus Mountains (Jordon-Thaden, 2009; Jordon-Thaden et al., 2010). In addition, palynological analyses of samples from the Venezuelan Andes have indicated the occurrence of Draba in Holocene deposits formed in the deglaciation events of the late Pleistocene (Salgado et al., 1988). Our present study, which has focused on species of Draba in the QTP and several other taxa from the Americas and Europe, has produced results, based on the ITS tree (Fig. 1; BS = 61%, BPP = 100%), which leads us to propose, firstly, that Group D should include D. nemorosa from the eastern edge of the QilianMountains as an ancestral clade, and secondly that based on the ITS clock, Draba originated about 1.36–2.71 Mya. We therefore hypothesize the eastern edge of the QilianMountains to be a centre of origin for some Draba taxa from which others were derived during the late Pliocene or early Pleistocene; a hypothesis which corresponds well with those of Wu (1965) and Wang (1989).

Since Draba has strong affinities with high alpine regions (e.g. the Alps, Himalayas and Rocky Mountains), its evolution appears to have been influenced by periodic glaciation and deglaciation events throughout the Pleistocene 0.01–1.8 Mya (Koch et al., 2003). During this period, Coelomnema endemic to the QilianMountains, and Draba in the QTP, would, in addition to glacial–interglacial cycles, also have been affected by the uplifting of the QTP since the Quaternary (approximately 2 Mya). Geological and paleobotanical studies of the QTP area, therefore provide a good context in which to develop a plausible scenario regarding the divergence and evolution of Coelomnema and Draba. The first large-scale uplifting of the QTP occurred approximately 3.4 Mya, accompanied by the formation of the largest glaciers in the Northern Hemisphere (Li et al., 1995). The plateau was strongly uplifted again about 2.5 Mya during the most widespread ice-age to have occurred in the Northern Hemisphere, when glaciers developed in the major mountain chains of the QTP area (including the QilianMountains), and which continued from the late Pliocene of the Tertiary to the Quaternary (Fang et al., 1995). These events are in agreement with our proposal that the derived centre of some taxa of Draba, and putative refugia for some alpine plants proposed in other studies (Zhang et al., 2005; Chen et al., 2008a, b) occurred in the eastern edge of the QilianMountains area. The third phase of plateau uplifting occurred about 1.6 Mya (Lower-Pleistocene), which was a climatic turning point and a period when the vegetation was replaced by alpine shrub and meadow (Shi et al., 1998). However, Su et al. (2005) suggest that the QilianMountains’ glaciers retreated due to a relatively warm climate, which was followed by the development of an alpine steppe flora (including some species of Brassicaceae) from the middle of the Middle-Pleistocene to the early Upper-Pleistocene (about 0.36–0.15 Mya). Our estimate of the timing of the divergence of C. draboides from Draba, between 0.15 and 0.31 Mya (Middle–Upper Pleistocene), corresponds well with both this viewpoint and the hypothesis of Chen et al. (2005c). Further support for this proposal for the divergence of Draba species has been presented by Grundt et al. (2004, 2006), who speculated that four circumpolar species (D. Lactea, Draba fladnizensis, Draba nivalis and Draba subcapitata) of Draba probably had origins in the Pleistocene. Furthermore, since the “Gonghe tectonic movement” about 0.15 Mya, the QilianMountains have been subjected to repeated periods of uplift and a continuously dry climate (Li and Fang, 1998). Most ancestral species of C. draboides might therefore have suffered extinctions, while currently surviving ancestor-like species, such as C. draboides, may have become extremely endangered and narrowly distributed because of changes to their habitats. Contemporarily, Koch and Al-Shehbaz (2002) suggested a radiation in the New World as short branches of South American Draba at ITS tree. And then nearly half species of the Draba were found in the New World (Al-Shehbaz, 1987). Moreover, low levels of genetic differentiation within and among the species suggests the expansion to have been recent (Grundt et al., 2004). We found only very low levels of genetic variation in the present study, based on ITS sequences (5.4%), and trnL sequences (2.8%), as well as short branches in the ITS and trnL trees (Figs. 1 and 2). Thus, it is possible that numerous species of Draba expanded rapidly from putative refugia during interglacial or postglacial periods, when impacts from climatic oscillations also occurred, during the uplifting of the QTP in the late Pliocene and Quaternary.

Acknowledgements

This work was supported by the National Science Foundation of China (30970204, 40901040), the Freedom Project of the State Key Laboratory of Cryospheric Sciences, Cold and Arid Regions Environment and Engineering Research Institute, Chinese Academy Sciences (SKLCS 09-06). We thank Professor Liu Jianquan for valuable suggestions and comments on the manuscript. We are also grateful to Dr. Wang Yujin and Dr. Wang Ailan for their advice on data analysis.

References
